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A plane problem of reflection of an acoustic wave from a curvilinear, variable-curvature
boundary is considered, The curvature of the boundary or its derivative of some order
has a discontinuity at one point, This gives rise to an additional, diffracted wave, with
a circular wavefront centered at this point, The first term of the geometric acoustical
expansion of this wave is determined and a strict estimate of the order of magnitude of
the neglected terms is given,

1, let D denote a plane region y > g (z) with the boundary I' (y = g (z)), on
which g (0) = go (1) (@20, @ =£@)+V@) @>0 (1.1
The functions €, and J are analytic and near the point z = 0 we have
VY (z) = az™ / nl 4 O (™),
P () =at/ (n — 1N 40 @), n_>1 (1.2)

where n is an integer, Thus g(™ (z) has a discontinuity equal to @ at z = (.Let awave
for which the first term of the geometrical acoustical expansion

u (tv L, y) = A ('1'7 y) f() (t — D (l', y)) + .. (1‘5)

is known, be propagated in the region ),
A solution is sought to the problem of the reflection of this wave from the boundary

T, i.e. the determination of a function U satisfying the wave equation Uy = Uyx -
+ Uy,,in D and one of the boundary conditions
U--0 o 3U/on=20 (1.4)

on I', and identical with the incident wave (1.3) in the region not yet reached by the
reflected wave (the reflected wavefront is obtained by the usual methods),

The required function I/ can be written as a sum [/ = u -+ v + w, where ¢ is the
incident wave (1. 3), v is the wave formed on reflection of & from the boundary
Iy (y = &o (7). The wave v can be obtained by the usual ray-tracing method, The
function w is a correction arising from the fact that the sum u + v satisfies the bound-
ary condition on 1'yand not on 1'. In order that the function {/ should satisfy the above
requirements, the tollowing conditions must be met. Function w must satisfy the wave
equation of one of the boundary conditions

o o+ v)
r or ;{,—iz—q(t,r), q:_‘(%n;

w=—q(t, ), ¢=(u+7) r

on I' and must become w -~ O in the region not yet reached by the waves reflected
from I"and I'y. since I' coincides with [, for z <C0 , we have ¢ (¢, ) = 0 .

The solution of the wave equation with boundary condition dw /dn = — q (¢, x)
is expressed by the Green's function & as
w(l, X,Y)=3G(I' —t,X,Y; z, y) q (¢, x) dtds (1.9)
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where the integration is performed over that part of I' where Gg =% 0, and ds is the
differential of the arc length of T'.
The Green's function (F is represented as a sum of the Green's function G, for the
region bounded by I'g together with the correction G, = G — G,. The function
G, (t,, X, Y; z,y) regarded here as a function of
Yy t1, Z, Y, is the sum of the circular wave G, origi~
nating at a point source (X, Y) and the wave G,
formed on reflection of G, from I';. The wave G, is
A known, the geometric acoustical expansion of the wave
G is obtained by the familiar method and the correc~
SYWE_ ¥ tion Gy,as shown in Sects, 7 and 8, does not affect the
Ba\ra r first term of the geometric acoustical expansion of the
wave 1w,

Fig,
e 1 2, Consider first the problem with the boundary

condition dU / dn = 0 and obtain the value of 3 (u -+ v) / dn on T (see Fig.1).
Let the Z-axis touch the boundary at the point O, the wavefront MN of the incident
wave (1, 3) reach the point O at the instant ¢ = 0 and the ray CQ form an angle B
with the z-axis () <« f < ;). The direction of curvature of the boundary over each
of its segments £ >> 0 and z << 0 is not important, as is the relative location of the
curves ['and I'yfor 2 > 0. when ¢t > 0, BK is the incident wavefront, ADB
is the wavefront reflected from I', AD B, denotes the position of the reflected wave~
front in the case when I';serves as the boundary, and £DF is the circular wavefront of
the diffracted wave wy(the existence of such a wave was noted in [1], pp, 23-24),
Suppose that in the geometric acoustical expansion of the incident wave (1.3) we

have f®M=0 <0 fo(=7""/T(m+1) (>0 1)
where m 2> 1, T is the gamma function and T = t — p (z, ¥).
The wave reflected from I’ has the following geometric acoustical expansion
v=B(z, y) fo (to) + .., To=1—po (2, ¥) (2.2)
Let n and ngbe the directions normal to I' and Ty, and p and 7 pythe gradients of

the functions p and pywhich are, of course, directed along the rays, Furthermore 2, g
and Vp, form acute angles with the y~axis, and VP an obtuse angle,

Then 9t/0n = — 8p / 0n = — cos (Vp, n) and a similar relation is true for
0t [ On,. At the point £ = y = 0 we have
p:pozo’ ap/ay:cos(\’]p,y)::-—sinﬂ, apo/6y=sinﬁ

therefore on the curves I' and T’y near this point as well as between them we have
dp / dy = — sin B + O (z), Opo /0y =sin P + 0 (x) (2.3)
From (1. 3) and (2. 2) it follows that on I;;
S = — Ay )+ (P + 55)fo(0), ¥ =cos(Vp, ) (2.4)
v

% — — Brofy' (%) + (R + ) fo(0), o= cos (Vpo, )

Here P, Q, R, § are functions of ¢, z, y with bounded derivatives, On Iy the
derivatives du / Ongand 8v / On, are expressed in a similar way, Since v is the wave
reflected from Iy, we have on T,



1016 A, F.Filippov

w—+v)/ong=01,=1,79=—7v.B~A4 (2.9}

Let us determine how the values of these functions change on passing from a point on
Ty 1o a point on T’ possessing the same abscissa, (The functions entering the geometric
acoustical expansion are analytically continuable to some vicinity of the curve T'y).
The distance between these points is equal to P (z) and the angle between the normals
at these points is equal to ¢’ (z) + O (x"). It follows , that during the passage bet-
ween the two boundaries the quantities A, B, P, @, R, §, 7, 7, change by O (¢), e
normal derivatives by O (’), the terms containing f, in (2,4) by O ('t™), and tue
quantities y and y, by ¢’ (x) x cos B + O (z™). From these estimates and trom (1, 2)
and (2, 5) it follows that on T’

Y+ 70 = 20 () cos B + O (a7)
3 d 7 r n+m-—
(uaj - Avfy" (t) — Brofy (to) + O (d D (d=1t]+]|z))
The sum of the terms containing A and B can now be written as
Byo [fe” (¥) — fo" (xo)l — [A (¥ + %) + 70 (B — A fo" (¥)
Using the previous estimates we have on Tfr x> 0

d(u-tv)

an = (Aysin B+ ao) (fo (V) — fo' (Te)) — 240fs" (V) ¥ cosB -+ R, (2.6)
Ay = A (0, 0), ay = By, — dgsin = O (z), Ry = O (dvm1)
It should be noted that on T, i,e. when y = g (z), we have
T=1—p;{7), Ty =t — p, (z), pi(@) = p (=, g (2))
P2 (x) = po (z, g (z)) (2.7)
and similarly to (2. 3)
Py (@) = —cos B+ 0 (@) p; @ =—zcosPp+0@), =12 (28)

Since by (2.5) Tq = 1 on [y, then py = p for y = g, (z). Equations (2, 3) now
imply that when y == g¢ () + ¢ (®),i.e.on T

po—p = P (&) — Py (&) = 20 (z) sin f + O (zp) (2.9)
3, Let us now find the principal part of the Green’'s function in (1, 5), By Sect,1 we
have G =Gy+ Gy, Gy =G, + Gy 3.1)

6y (0, X, Vi 2, ) = @) (12 — p*)™
p= |l — X+ (v — YPI

The wave (7,, regarded as a function of {;, x, ¥, has the following geometric acous-
tical expansion
o= A% (l,—p)™ + 0 (h—p)™) A% = @Y Z)" (3.2)
Here and below, it is implied that expressions such as a~'*, @' and similar are
replaced by zero when a < 0.

Since G4is a wave generated by reflection of the wave (3.2) from T'y, we find that,
as in Sect, 2,
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Gy = B* (t; — po) ™ + O ((t; — po)*t), B* = A* + 0 ()
Po=p + O ) 3.3)
on T.
At the point (0, 0) we have

A* = B*= A, A*=(@n V2, P =X*4 1?2
When x is small
A* = Ay* + O (z), B* = A,* + O (2)
at any pointon I',
Setting
=T —t, T=r+h X=rcosqg, Y=rsing (3.4)
we obtain
p=r—zcosgp—ysing + O+ y?)
onT,ie. when y = g (z) = O (z?)

h—p=ps(@)+h—t i — P =Pe@) +h—1t
pi(x) =xcos@+ 0 (2%, pi(x)=cos@-+0(2) (=34 (3.5)
where the derivatives are estimated in a similar fashion to those of (2. 3),
The form of the region of integration in (1, 5) is discussed next, According to Sect.1,
g = 0 when z < 0. Furthermore G = 0 onT, when ¢ >k -+ max (py, p,), and

the waves u and v arrive at the point (z, g (x)) on I' at the instants p; (z), p, (z)
(see (2.7)). Therefore the integration in (1, b) is performed over the region

z >0, min (py, p;) <t <<h + max (p,, p,) (3.6)
By (2. 8) and (3. 5) the boundaries of this region differ from the straight lines
t= —zcosP and f=h + zcos ¢ only by O (z%) when z > 0.
Assume that ¢ > 5t — B and h is sufficiently small, Then for A <C § we have that
Gg = U everywhere in (1.5),i.e. w = 0 when T < r

When b > 0, the curves ¢ = p, () and ¢ = h + p; (z) intersect the abscissa at
the point z;;, i. e, pi(2:) = h + pj(xy) (i=1,2j=3,4) (3.7)

Formulas (2, 8) and (83, 5), together with the inequality ¢ > nt — f ,now yield
Z;; = hb1 4 O (h¥), b= —cosP —cos¢p >0 (3.8)

This means that the quantities ¢, Z, ¥, @ in (3, 6) are of the order of O (h).

4, The principal part of the diffracted wave can be found by replacing G by G, in
(1.5), i, e, neglecting @,. If, in additior. R, is neglected together with g, in (2.6) as
well as the remainders in (3,2) and (3. 3), replacing ds by dir and 4%, B* by A4,*,
gives rise to an error of the order () (hn+m+%), It remains to calculate the integrals

for j = 3, 4 P
(=30 OV gy (0=
(pj+h—u (pj+h—0"

The quantities T, T, , f, appearing here are the same as in (2.7) and (2,1). The

integrals are computed first for m = 1/,, then for any m > 1/,. Integration with

respect to ¢ from p; (z) to b + p; (r) yields
13

n=hL; g, = \ ¥ (2) dz =P (21;) = (k] b) + O (R*Y') (4.1)

o

L1
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where &;; are the same as in (3, 7) and (3. 8), Similarly we obtain
nTl My, = Ty — Zaj
Let us estimate this difference, From (3.7) it follows
Pj (Tag) — Pj (13) + P2 (@) — Py (%2;) = Pa (1)) — Py (2y)
Applying the finite increment formula to the left-hand side of the above expression,

using the estimates for the derivatives (2, 8) and (3. 5), and applying (2. 9) and (3, 8) to
its right-hand side, we obtain

(Za; — Z15) (cos @ + cos B + O (zy; + 2,;)) = 2¢ (zy;) sin B +
+ 0 (#1¥21)s 215 — 255 = 2671 (kb7) sin B+ O (h) (4.2)
Now consider the case for any m > /,. The operator

A (h—$) k-1
i = Lo —fwds  @>0 (4.3)
L —o0

transforms a function of the form (2.1) into an analogous function in which m is replaced
by m -+ k. In particular, application of the operator I, where % is an integer, to any
function is equivalent to integrating this function % times,

Applying the operator I, where k& = m — 1/, to the function Lj, y, (k) and taking
{1.2) into account, we obtain

Ly m (B) = Vaab™ BT (4 m 1) + O (0™

The formula for Mj,., differs only by the factor 25! sin B.

Using the expressions for the integrals and neglecting @, (this will be justified in
Sect, 7), we obtain the following expression for the diffracted wave for T ~> r under
the boundary condition U / dn = 0 :

wo (T, X, Y) = _Vz 2 Ah™ ™ (1 L cos B cos ) — L OEM™Y  (4.4)
V ar T (n - m 41/2) (— cos B — cos @) **1

Here h = T — r; r, @ are polar coordinates of the control point (X, Y); a and
n depend on the form of the boundary (see (1.2)); 4, = A (0, 0) and m depend on
the incident wave (see (1. 3) and (2.1)). Finally P is the polar angle of the direction
of the incident ray arriving at the point (0, 0). Thus, when T < r we have w, = 0.

The formula holds near the front of the diffracted wave, at some distance from the
reflected ray ¢ = st — P and the boundary I', If on the other hand the boundary T
coineides with the line ¢ = 7t ,when x < 0, then formula (4, 4) holds up to this part
of the boundary, If in addition f = =, i,e. the given wave of the form (1.3) moves
along the boundary, we have v = u, which means that the incident and reflected waves
coincide, yielding the sum of the wave moving along the boundary, In this case we find
that Ay = 1/, A (0, 0) in (4.4) where A is the first coefficient of the geometric
acoustical expansion (1. 3) of this wave,

During the derivation of (4.4) it was assumed that ¢ >1n — f. Only for these
values of ¢ the wave wgand the correction w coincide (see Sect.1). The formula (4,4)
however is also valid for ¢ <C ;1 — B. To prove this, the line ¥ = g, () -+ ¥ (2)
must be taken as the analytic boundary I', and z replaced by — z. Then ¢, §, ¢
become {— 1)1 a, n — B, ® — @, respectively, and the problem reduces to the
case ¢ > — P, for which (4,4) has been already proved, The substitution just
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shown does not alter the formula, and consequently the latter is valid for ¢ << ¥ — B.

5, Let us now consider the problem formulated in Sect, 1, with the boundary condition
U = 0 on I'. In this case the function w satisfying the condition w = — ¢ (¢, z)on
T’, is expressed by 3 3

w(T,X,Y)= ——SS&q(t, DL G (T —1, X, Y,z y)dtds (5.0)

The region of integration is defined as in (1.5) and G* denotes the Green's function
for the wave equation with the boundary condition U = 0, integrated once with respect
to 7, The formula (5,1) can be obtained from formula (66) Sect, 502 of [2], by repla-
cing 2 hy the function 2nG* in the latter and can be proved in a similar fashion since
both functions have the same singularity on the axis of the characteristic cone,

The integration in (5, 1) is performed as in (1, 5) and in place of (4, 4) we obtain
. V2 adoh™ ™2 sin 3sin @

VarT (n 4 m +41/2) (— cos 3 — cos ) **?

8, Certain modifications of the problem will now be considered, It is assumed, for
definiteness, that the boundary condition aU / 8r == 0 applies, Let us assume that in
{(1.2) n > 1 is not an integér and replace n! by T (n + 1), so that the function ¥ (z)
is analytic only when =z > 0.

In this case the formula (4, 4) remains valid in the region ¢ > n — B , the estimate
of the remainder deteriorating only for 1 < n < 2, In the region ¢ < % — B the inte-
gral in (1, 5) yields the sum of the incident and reflected wave, The region of integra-
tion remains finite when %2 — 0 and the nonanalytic part of the integral must be isolated
to find the singularity of the diffracted wavefront, In general it is found that the singu-
larity in the region ¢ < = — B appears on both sides of the wavefront T = r, i, e, as
r—=T—0andas r—» T + 0.

Assume now that P {z) decreases faster than any power of z as z-— 0 and ¢/’ is
monotonic at small z. Then, instead of (4.4), we obtain for ¢ >n — 3

V2ad,
Wy = V}G
where ¥ (z) = I, ¥ (z), the operator I, being given in (4.3), ¢ (z) = 0 when z 0;
he=T —r and b= —cosf — cos ¢ > 0.

Now consider the steady state problem with the boundary condition 4U / an == 0.
Assumne that the geometric acoustical expansion of the incident wave has the form
u=A (z, y) P& i e, that it can be obtained from (1,3) by replacing
fo (1) by e~i7 performing the corresponding formal substitution in (4, 4), we obtain
V2 aApe T+ 2=/ (1 L o5 B cos @)

Var @' (— cos B — cos g)"+!

In the case when z < 0, the boundary is a straight line, becoming a curve when
z >0 and B = n; this problem has been solved using approximate methods in [3, 4]

It is also noteworthy that the known Kirchhoff method yields an expression for we,
which agrees with (6, 2) with the accuracy of up to 0 (@ ™).

T. A rigorous estimate of the change in the value of the integral (1. 5) caused by
neglecting G, may now he obtained for the case when m > 6 in (2.1). Integrating
(1. 5) by parts four times we obtain

U/’gz

+ 0(h11+m'r‘,’z) (52)

(1 + cos B cos ) LW (hb) 4 O (h2¥" (k/b)) (6.1)

wo (T,X,Y) =T

4+ 0™y (82)
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Yy (t ”
w{T, X,Y):\SJ%(Z‘I;I)H(T—-I, X,Y;x,y)dt ds (7.1

By (3,1), H = H, + H,; functions H and H; are obtained from G and G, by fourfold
integration with respect to 7. Since the Greens function G satisfies the boundary con-
dition G / dn = 0, it follows that H also obeys this condition, Consequently on I' we

have OH, / 9n = —¢* (¢, z) (@* = 0Hy ! an|p) (7.2)
Now replacing T — ¢t by ¢ and considering H; (¢, X, Y; 2, y) as a function of ¢, z,

we find that, as in Sect, 3, Hy = H, + H,, where
Hy= Q2ap) " (t — p)™ /T (my +1) + 0 ((t — p)™*Y), my="] (7.3)

and Hyis the wave formed on reflection of H, from I'y,. Formula (2, 6) can therefore be

used with =, Ay = (2nr) ', 8= g, r= (Xt + Y)'h

to estimate the function ¢*,

If the function ¢* and its first derivatives are now inspected in the region [t —r|+

+ | z |< Ch where h are small, we find that since by (2,9) ¢’ = 0 ("), t = 0 (&),
T — 1o = O (k™) in this region, Eq, (2. 6) yields ¢* = O (A"*'/"). The derivatives

g = O (W), gt = 0 (R (7.4
are estimated in a similar fashion,

Let us now consider the function H,. This function satisfies the wave equation, the
boundary condition (7,2) and vanishes when H = H,, i.e. in the regions not yet reached
by the waves formed on reflection of (7. 3) {rom the segments of the boundaries I' and
T's on which z >0 . If H,is written in the form H, = ¥V + W, where ¥V is a function
constructed below satisfying the boundary condition (7.2) and W satisfies the homogene-
ous boundary condition as well as the following nonthomogeneous equation

Wy — AW =1 (f= AV — V), oW /on=0 on I (7.5)

Let @ (7, £) denote any function of class €2 positive in the region @ {1 <1< 2,

0 < § < 1). vanishingoutside ¢ and such that its integral over @ is equal to unity, In
addition, let 7 denote a normal to T,

n=y— g (), g {8, 2y = ¢ (t, z) cos (n, y)
V(ts z, !l) = —‘TIXS‘I° (l'_ nt, * — T]E,)(L) (T’ g) deE

It is now possible to estimate the derivatives of ¥V

Vy = V= — N (@ — 0t — nBex”) wdud
On I',i,e, when n = 0, we have V = 0, ¥y = — ¢°, therefore 6V /dn = — ¢* on
I, Furthermore ¢.° = —n¢,°, ¢:° = -—ng,’°, therefore on integrating by parts we obtain

V, = W (0 + e, + Zo;) dudf

Vv, and V, can be similarly expressed in terms of ¢* and the second derivatives of
in terms of the first derivatives of °. It follows therefore from (7, 4) and (7, 5) that
F= 0 (R,

To estimate the energy of the wave W we denote by K the part of the cone

Ko (~Coh < t —r < Cih —V 22 F 39

in which ¥ > g (z); by K (7) its intersection with the plane ¢ == const and assume that
rand ¢ are as in (3.4)., The number C, is chosen so that 4, == V = { on the cone base,
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i.e, on K {t,) where = r — Cph.

Such a choice is feasible when 0 < & < h,, since Hy == H — H, = U outside the
region of influence of those segments of T' and T, where z > 0. On the segments them~
selves we have that H = H, = 0 in the parts not yet reached by the wave (7, 3), i.e.
where ¢ — r<{ — z cos ¢ -+ O (2?). The number C, can be taken as independent of ¢
and h for any fixed § > 0 whend (o n .,

let E (1) denote the energy of the wave W in the region K (t), i, e,

1 e
Ey= SB WE+ WP+ Wyhdzdy (7.6)
EW
Since W = W, = 0 in K (t;) we have, as in [5],

s

so<[i(4 §f s o] <G rarara

{s

Since t—f, < Cih -+ Coh, f = O (™73, then E (f) = O (h¥"),

Let us estimate the function W on Ty, the part of T contained inside the prism
|t — 1]+ ]x] < Coh. For a sufficiently large ratio ¢,:C, , W=0 on the part §pof
the side surface of the cone X, lying inside the prism, Therefore on T'n

He = W= (§ Wydy)® < (Cy + Co) RS Wy2dy
Here the integration is performed over the segment connecting T'; and §). Integrating

both sides of the inequality with respect to t and z over the region I'; and noting that
by virtue of (7. 6) the triple integral of W, is not larger than the integral of 2k (2), we

obtain §‘S Hedtdr =0 (h2n+7) (7.7)
h

Now estimate the part J, of the integral (7.1), obtained by replacing H by H;, which
was neglected in the derivation of (4.4). Since ¢ = a(u + 1) / an|p, it follows from
(2.1) and (2. 6) that a*¢/att = O (h™*™ %), According to formulas (3.6)~(3. 8), when
¢ > n — B+ & the integration in (7,1) is performed over the region with radius of
the order of O () surrounding the coordinate origin, Using the Buniakowski inequality
and the estimates obtained, we find that J, = 0 (A®™*™3, Since n > 2, J, can be
included in the remainder of formula (4.4).

From the estimate obtained it also follows that when » > 2, we can find another
n — 2 terms of the geometric acoustical expansion for the wave (4, 4) by replacing ¢
in (1. 5) by the known function G,.

8, For the boundary condition U = 0 a rigorous estimate of the influence of the
neglected terms is obtained in basically the same manner. Let m > 4 in (2.1). Double
integration by parts of (5.1) yields

w(T, X, Y)—-——SS

As in (3,1) we find that H = Hy -+ Hyithe functions /¥ and H;are obtained from ¢
and &; by integrating three times with respect to 7. Relation (7.2) on T' now becomes
Hy = —¢*(t,2),q* = Hy,and my = 5/, in (7, 3), Estimates (7,4) remain as before but
the estimate for H, changes,

Lemma, Let K denote the part of the cone 1, <t <t — ¥z* + 4* in which
vy > g (z) and g’ (z)}| < const and B is the part of the surface ¥ = g (z) situated inside

Bg(t,x) 8
-——07;"“ H(T——-t X, Y, z, y)dtds (8.1)
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the cone, Also let u be the solution of uy == uxy - uyy in K satisfying the conditions
= u; =0 when ¢ = ¢, and u = @ on B. Then

iS(%'}zad‘* P ig 1t +H3I)z [( 0 )2+ (Bq) ] std' 62
a = cos (n, y) = (1 + g'®~", B = cos (n, 7) = — ag’

where s is the arc length of the curve y = g (2).

The lemma is proved by integrating the identity 2 (u; + uy) (uy — Uypy — Uyy)=0
over K and transforming the resulting volume integrals into surface integrals,

Note, Using the inequality (8,2) we can easily estimate the energy £ (¢) of the
wave u at any cross section ¢ = ¢, of &

el

1 (¢ Bu 8(;)
E() =— \\ (P u+u N dedy=— S\ T d!ds (8.3)
K (&) B (i<t

The estimate for the right-hand side is obtained using (8,2) and the Buniakowski
inequality,
Applying the lemma to the case when y = H,;, ¢ = ¢* and A is the same as in Sect,

7, we obtain SS (8111’ ds di < g Haq*‘) '(ix_) stdt — 0 (h2"¥)

Taking into account the fact that in (2,1) m > 4, we obtain 3¢/ 913 = O ("™ % on
I;,. Consequently the integral of #3%¢/ a133H, / an over T, is equal to O (A®"*™~"s and
can be included in the remainder of (5.2) when n > 2,

8, The method given above can also be used when the boundary I' consists of two
smooth arcs meeting at an angle at the point 0, i, e, the method is also applicable to
the problem of the diffraction of a wave in an angular region with curved sides, In this
case, the angle formed by iwo tangents to the curves at O is taken as Iy, and the first
term of the geometric acoustical expansion of the diffracted wave is identical with that
obtained in the problem of diffraction on I'y. The proposed method makes it p%ssible
to obtain the second term and a rigorous estimate of the remainder (at that portion of the
diffracted wavefront at which the reflected wave is absent),

Suppose that two terms of the geometric acoustical expansion of the incident wave
(1.3) are known, The solution of the problem of diffraction of this wave on T' is the
sum of the known solution (see T5] Sect, 4) of the diffraction problem of this wave on
T's and the correction w defined by (1.5) or (5,1), As before we have that ¢ = G, + G,
where Gy is a known [5] Green's function for the region bounded by I', and @, is the
remainder. Asin Sects,4 and 5 we have w = 0 (h""™"%) and neglecting Gi causes an
error in w of the order of O ("™~ (the proof is identical to that of Sects, 7 and 8),
and does not affect the second term of the geometric acoustical expansion of the dif-
fracted wave, this term being of the order of O (A™+73),
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A problem concerning steady, capillary-gravitational waves of finite amplitude generated
by pressure periodically distributed over the surface of an infinitely deep stream is con-
sidered, A rigorous solution of this problem is presented,with the surface pressure given,
in the form of an infinite trigonometric series, In addition a particular case is investi-
gated when the wavelength of the given pressure coincides with the length of the steady
free wave corresponding to the specified flow velocity and constant pressure at the sur-
face, The waves investigated here cease to exist when the periodic part of the pressure
distributed over the surface vanishes identically and the flow becomes uniform, Such
waves have been called induced {1}, An analogous problem for gravitational waves was
investigated earlier [2] by the suthor, In addition, the author used the Levi-Civita method
[3, 4] to reduce a similar problem for free capillary- gravitational waves, to a nonlinear
differential equation,

In the present paper the problem is reduced to solving a certain nonlinear integral
equation, The latter is discussed and its solution is constructed for any degree of appro-
ximation, The first three approximations are derived completely and an approximate
equation describing the wave profile is given,

1, Statement of the problem and derivation of the basic inte-
gral squation, Consider a plane paraliel steady motion of a perfect incompressible
heavy fluid bounded only from above by a free surface at which the pressure is given by
Po = Po’ -+ Po (%) . Here p,’ = const and p, (2) is a given periodic function of the
horizontal coordinate z. The flow is assumed to move from left to right with constant
velocity ¢, at an infinite depth, Since the pressure at the surface is a periodic function
of z,the surface assumes the form of a periodic wave, stationary with respect to coor-
dinates attached to a progressive wave moving with velocity ¢. The present paper shows
that induced waves exist for any finite values of c.

Let the required wave and the pressure p, (x) both possess the same symmetry with
respect to the vertical through the wave crest, The y-axis is chosen so as to coincide
with the axis of symmetry, and is directed vertically upwards, The coordinate origin O
is placed at the point of intersection of y~axis with the free surface and the x-axis is
directed to the right,



