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A plane problem of reflection of an acoustic wave from a curvilinear, variable-curvature 

boundary is considered. The curvature of the boundary or its derivative of some order 
has a discontinuity at one point. This gives rise to an additional, diffracted wave, with 

a circular wavefront centered at this point. The first term of the geometric acoustical 
expansion of this wave is determined and a strict estimate of the order of magnitude of 

the neglected terms is given. 

1, let D denote a plane region y > g (.z) with the boundary I’ (y = g (x)), on 
which g (2”) = go (,I) (.I: :, O), 6 (d.) = go (x) + ‘II, (5) (z >- 0) (1.1) 

The functionsgo and 11) are analytic and near the point x = 0 we have 

$ (X) = CLX? / n! + 0 (5n+r), 

9 (x) z axn-1 / (n - I)! + 0 (X’L), n > 1 (1 .a) 

where IZ is an integer. Thus g(n) (5) has a discontinuity equal to n at rc = 0. Let a wave 

for which the first term of the geometrical acoustical expansion 

U (t, 2, y) :mm A (2, Y) fo (t - P (2, Y)) + .** (1 .S) 

is known, be propagated in the region D. 

A solution is sought to the problem of the reflection of this wave from the boundary. 
r, i.e. the determination of a function U satisfying the wave equation utl = u,, + 

+u yy, in D and one of the boundary conditions 

u 0 or dU/an=O (1.4) 

on r, and identical with the incident wave (1.3) in the region not yet reached by the 

reflected wave (the reflected wavefront is obtained by the usual methods). 
The required function U can be written as a sum U = u + v + w , where u is the 

incident wave (1.3), u is the wave formed on reflection of U from the boundary 

ro (J/ = go (2)). The wave o can be obtained by the usual ray-tracing method. The 
function w is a correction arising from the fact that the sum u -+ u satisfies the bound- 
ary condition on l’,and not on I‘. In order that the function U should satisfy the above 
requirements, the tollowing conditions must be met. Function zu must satisfy the wave 
equation of one of the boundary conditions 

on I’ and must become w :mm 0 in the region not yet reached by the waves reflected 

from I? and I’“. Since f coincides with r. for z ~0 , we have q (t, .z) = 0 . 
The solution of the wave equation with boundary condition aW /an = - q (t, x) 

is expressed by the Green’s function G as 

w (T, X, Y) == IJ G (2” -t,X, Y; x, y) q (t, x) dtds (1.5) 
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where the integration is performed over that part of I’ where @ j= 0, and 6% is the 
differential of the arc length of I?. 

The Green’s function G is represented as a sum of the Green’s function Ga for the 
region bounded by pa together with the correction G, = G - Go. The function 

Go (tl, X, Y; 2, y) regarded here as a function of 

t,, 5, Y, is the sum of the circular wave G, origi- 

W nating at a point source (X, Y) and the wave Ga 
formed on reflection of &from I’*. The wave Gs is 
known, the geometric acoustical expansion of the wave 

G, is obtained by the familiar method and the correc- 

tion G,, as shown in Sects. 7 and 8, does not affect the 
first term of the geometric acoustical expansion of the 

wave w, 

Fig. 1 
2. Consider first the problem with the boundary 

condition dU / an = 0 and obtain the value of r3 (U + u) I dn on r (see Fig.1). 
Let the x-axis touch the boundary at the point 0, the wavefront MN of the incident 

wave (1.3) reach the point 0 at the instant t = 0 and the ray CO form an angle p 

with the s-axis ( 0 4 fi < st ). The direction of curvature of the boundary over each 
of its segments x > 0 and z ( 0 is not important. as is the relative location of the 

curves r and I’,for 2 > 0. when t > 0 , BK is the incident wavefront, ADB 
is the wavefront reflected from r, AD B, denotes the position of the reflected wave- 

front in the case when r0 serves as the boundary, and EDF is the circular wavefront of 

the diffracted wave wa(the existence of such a wave was noted in Cl], pp.23-24). 

Suppose that in the geometric acoustical expansion of the incident wave (1.3) we 
have 

fo (2) = 0 6 < 0) fo@) = rrn/ F(m + 1) (7.>0) (2.1) 

where m > 1, r is the gamma function and z = t - p (z, y). 
The wave reflected from r0 has the following geometric acoustical expansion 

n = B (5, Y) fo @,I + .,.I ro = r - PO (G ?A (2.2) 

Let n and no be the directions normal to I‘ and ro, and op and Vpethe gradients of 

the functions p and p,wMch are, of course, directed along the rays, F~hermo~ n, n, 
and Vp, form acute angles with the y-axis, and Vp an obtuse angle, 

Then &/an = - ap 1 an = - COS (Dp, n) and a similar relation is true for 
at / ano. At the point x = y = 0 we have 

p = PO = 0, ap I dy = cos (VP, y) = - sin B, b. J $I = sin S 

therefore on the curves r and r. ilear this point as well as between them we have 

ap i ay = - sin B + 0 (4, 8p. I’ ay = sin fl -I- 0 (CC) (2.3) 

From (1.3) and (2.2) it follows that OR r 
au 
%k = r = COS(VP, nl (2.4) 

au 
zG= - Wofo’ (~0) + -(R -I- g) fo (TO), TO = ~0s (VP,, n) 

Here P, Q, R, 8 are functions of t, x, y with bounded derivatives. On r. the 
derivatives 816 / dno and 8~ i dn, are expressed in a similar way. Since v is the wave 
reflected from ro, we have on r. 
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f3 fu -/- u) / an, == 0, z, r y’, y. z - yt B r A (2.5) 

Let us determine how the values of these functions change on passing from a point on 
r. 10 a point on r possessing the same abscissa. (The functions entering the geometric 

acoustical expansion are analyticaily continuable to some vicinity of rhe curve r,). 
The distance between these points is equal to 9 (5) and the angle between the normals 
at these points is equal to q’ (2) + 0 (w’). It follows , thar during the passage bet- 

ween the two boundaries the quantities A, l3* P, Q, ff , s, T, ?I, change by 0 ($1, : ‘:e 
normal derivatives by 0 ($‘), the terms containing f. in (2.4) by 0 ($‘P), and i:it 
quantities y and yO by $’ (x) x COS fi + 0 (xn), F rom these estitnates and trom (I. 2) 

and (2.5) it follows that on 1 

y -ii- yo = Z$’ (r) COOS p + 0 (P) 

a (u + u) 
an = - &f,,’ (z) - By,,f,’ (To) -t_- 0 (dn+m-l) Cd = 1 t I + I .T 11 

The sum of the terms containing A and B can now be writtell as 

BY, [fo’ @> - fo’ ho>? - [A (y -+ yo) -I- yo (B - A)1 fo’ 6) 

Using the previous estimates we have on I? for x >r 0 

a (y,. v) -_ (A, sin p -+- UC) (fo’ (t) - fo’ (Z,,)) - 2A0fo’ (N V’ 033 P i % (2.6) 

A, = A (0, O), a, = By, - A, sin fi = 0 (z)* R, = 0 (dnimVr) 

It should be noted that on I?, i.e. when y = g (z), we have 

z = t - P1 64, To = f - Pz k), PI(X) = P (x3 g (4) 

Pz (4 =- PO (x7 .!T (4) (2.7) 
and similarly to (2.3) 

pi’ (X) = - coS p + 0 (21, pi (x) = - 5 cos fJ + 0 (x2), i = 1, 2 (2.8) 

Since by (2.5) Z, = z on ra, then p,, = p for y = g, (~‘6). Equations (2.3) now 

imply that when y T-= g, (5) f \I) (x), i.e. on r 

Pa - p = P.L (4 - p1 (4 = 34 (4 sin g + 0 CN (2.9) 

3, t,et us now find the principal part of the Green’s function in (I. 5). By Sect. I we 

have G = G, + G1, Go = G2 + Gs (3.1) 

G, (tl, X, Y; 5, y) = (2%)-l (t,” - p’f--I’? 

p L_7 [ (Jy - X)2 + (y - Yy]‘/~ 

The wave G,, regarded as a function of t,, 5, y, has the following geometric acous- 
tical expansion 

G, := A* (tl. - p)-“2 + 0 ((tl - p)‘“), A* := (2nf/r$$7)-1 (3.2) 
IIere and below, it is implied that expressions such as a-“?, at,2 and similar are 

replaced by zero when a < 0. 
Since G3is a wave generated by reflection of the wave (3.2) from II*, we find that, 

as in Se’ct. 2, 
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63 = B* (tl - po) -‘A + 0 ((tl - po)‘~~), B* = A* + 0 (4)) 

PO = P + 0 (44 
on r. 

(3.3) 

At the point (0, 0) we have 
- 

A* = B* = Ao*, A,* = (2n V’Zr) -I, 9 = Xa + Y2 

When 5 is small 

at any point on I?. 
A* = A,* + 0 (z), B* = A,* + 0 (x) 

Setting 

t, = T-t, T=r+h, X = r cos cp, Y = r sin ‘p 
we obtain 

p=r-xccoscp - y sin cp + 0 (9 + y”) 

On I’, i.e. when y = g (LC) = 0 (x2) 

(3.4) 

t1 - P = p3 (x) + h - t, t, - po = p4 (5) + h - t 

Pi(“) = xcoscp+O(x2), pi’ (SC) = COSqJ “f- 0 (2) (j = 3,4) (3.5) 

where the derivatives are estimated in a similar fashion to those of (2.3). 

The form of the region of integration in (1.5) is discussed next. According to Sect-l, 
Q = 0 when x < 0. ~~thermore G = 0 on I’, when t > h $- max @s, pa), and 

the waves u and u arrive at the point (a, g (5)) on r at the instants p1 (x), ps (x) 
(see (2.7)). Therefore the integration in (1.5) is performed over the region 

x > 0, min 03r, pa) < t ( h + max (pa, p4) (3.6) 
By (2.8) and (3.5) the boundaries of this region differ from the straight lines 

t= - x cos p and t = h -f- xcos cp only by 0 ($1) when x > 0 . 
Assume that cp > a-t - p and h . 1s su rciently small. Then for h < 0 we have that ff 

Gg = 0 everywhere in (1.5), i.e. w = 0 when T ,( r. 
When h > 0, the curves t z pi (x) and t = h + pi (x) intersect the abscissa at 

the Point xii9 Le. pi tzij) = h, + pj (xii) (i = 1,2; i = 3,4) (3.7) 
Formulas (2.8) and (3.5), together with the inequality cp > IX - /3 , now yield 

Xii = hb-l + 0 (ha), b = - cos p - cos cp > 0 (3.8) 
This means that the quantities t, 5, y, d in (3.6) are of the order of 0 (h). 

4, The principal part of the diffracted wave can be found by replacing G by GO in 
(1.5), i.e. neglecting &. If, in addition. R, is neglected together with a, in (2.6) as 

well as the remainders in (3.2) and (3;3),replacing da by ds and A*, B* 5y Ao*, 
gives rise to an error of the order 0 (@+m+%). It remains to calculate the integrals 

The quantities Z, zs , fa appearing here are the same as in (2.7) and (2.1). The 
integrals are computed first for n = r/s, then for any m > l/s. Integration with 

respect to t from p1 (2) to h. + pj (z) yields . 

“Ii 
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where 5~ are the same as in (3.7) and (3. 8). Similarly we obtain 

5C-“’ Mjhf/* = Xlj - "zj 

Let us estimate this difference. From (3.7) it follows 

Pj (xzj) - Pj (zlj) + Pi3 (Gi) - P2 tx2j) = P?, (xlj) - Pl Czlj) 

Applying the finite increment formula to the left-hand side of the above expression, 
using the estimates for the derivatives (2. 8) and (3.5), and applying (2. 9) and (3.8) to 
its right-hand side, we obtain 

Cx21 - %I) tcoS 9 + eoS B f- 0 (Xlj + 2&j)) = 24.J (Xlj) sin fi -+- 

+ 0 (x~j~~~~j)), +j - $j = 2be1rt, (M-l) sin p + 0 (it?*) (4.3 

Now consider the case for any m > I/,. The operator 

h (h-s)k-1 
IkfW = 1 I’(k) f(s)ds (k>O) 

Y -03 

transforms a function of the form (2.1) into an analogous function in which m is replaced 

by m + k . In particular, application of the operator I,, where k is an integer, to any 

function is equivalent to integrating this function k times. 

Applying the operator Ikwhere k = m - “is to the function LQ* L/r (h) and taking 
(1.2) into account, we obtain 

Lj, ,,, (h> = fZab-nhn’m-‘la/ I’ (a + m + ‘12) + 0 (hn+*“fs) 

The formula for liipf,*, differs only by the facror 2b-l sin p. 
Using the expressions for the integrals and neglecting Gr (this will be justified in 

Sect. 7). we obtain the following expression for the diffracted wave for T > r under 
the boundary condition 8lJ f 8r.t L-= 0 : 

wo (T, x, Y) = 
l/ZaA”hn+m-l’~(l + cos p cos cp) 

I/~r(n+m+1/2)(_ccosp-coscp)n+l + o(hn+m+“*) (4*4) 
Here h = T - r; r, cp are polar coordinates of the control point (X, Y); a and 

n depend on the form of the boundary (see (1.2) ); A,, = A (0, 0) and m depend on 

the incident wave (see (1.3) and (2.1)). Finally fi is the polar angle of the direction 
of the incident ray arriving at the point (0, 0). Thus, when T & r we have w,, = 0. 

The formula holds near the front of the diffracted wave, at some distance from the 
reflected ray cp = st - fr and the boundary I’. If on the other hand the boundary r 

coinoides with the Iine v = 5c ,when x & 0 , then formula (4.4) holds up to this part 

of the boundary. If in addition p = it, i.e. the given wave of the form (1.3) moves 
along the boundary, we have ZJ zz U, which means that the incident and reflected waves 
coincide, yielding the sum of the wave moving along the boundary. In this case we find 
that d 0 =I I/, A (0, 0) in (4.4) where A is the first coefficient of the geometric 
acoustical expansion (1.3) of this wave. 

During the derivation of (4.4) it was assumed that cp> st - j?~. Only for these 

values of ‘p the wave LL’~ and the correction w coincide (see Sect. 1). The formula (4.4) 
however is also valid for 9 < n - @. To prove this, the line y = g, (X2’) + 9 (5) 

must be taken as the analytic boundary I’, and x replaced by - 5. Then a, p, rp 
become (- l)ail a, sr - p, x - rp, respectively. and the problem reduces to the 

case cp>n--_, for which (4.4) has been already proved. The substitution just 
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shown does not alter the formula, and consequently the latter is valid for Cp < Z’C - fl. 

5, kt us now consider the problem formulated in Sect. 1. with the boundary condition 
U = 0 on r. In this case the function w satisfying the condition w = - (I (t, cc) on 

I’, is expressed by 
w(T,X,Y)=--SS~q(t,~)~~GL(T-t, X,Y; x,y)dtds (5.1) 

The region of integration is defined as in (1.5) and G:N denotes the Green’s function 
for the wave equation with the boundary condition u = 0, integrated once with respect 

to 2”. , The formula (5.1) can be obtained from formula (66) Sect. 50’2 of JJZ], by repla- 

cing 2’ by the function 2nG* in the latter and can be proved in a similar fashion since 

both functions have the same singularity on the axis of the characteristic cone. 

The integration in (5.1) is performed as in (I.. 5) and in place of (4.4) we obtain 

wg = - 
l/~aAohn-km-'~~ sin 3sincp 

-VGr (n _t m + I/Z) (- cos 3 - cos rp) =fl 
+ * (pw2) 

(5.21 

6, Certain modifications of the problem will now be considered. It is assumed, for 
definiteness, that the boundary condition 8U ! an = 0 applies. Let us assume that in 

(1.2) n > 1 is not an integer and replace n! by r (n + I), so that the function 9 (z) 
is analytic only when x > 0. 

In this case the formula (4.4) remains valid in the region g, > n - p , the estimate 
of the remainder deteriorating only for 1 < n < 2 . In the region cp < 71 - P the inte- 

gral in (1. S) yields the sum of the incident and reflected wave, The region of integra- 
tion remains finite when h -+ 0 and the nonanalytic part of the integral must be isolated 

to find the singularity of the diffracted wavefront. In general it is found that the singu- 
larity in the region ~FJ < JC - /3 appears on both sides of the wavefront T = r, i.e. as 

r 4 T - 0 and as f -+ T i- 0. 
Assume now that 21) (s) decreases faster than any power of x as x -+ 0 and 9” is 

monotonic at small CC. Then, instead of (4.4). we obtain for sp > n - @ 

1/2 UA” 
wo =- (I + cospcoscp) L yn-ni:Y (h/b) -+ 0 (Plf (h/b)) 

where Y (x) = Im_,,,$ (x), the operator I, being given in (4.3), 9 (x) = 0 when I < 0; 
h= T-.. r and &= -cosp- CoStp>O. 

Now consider the steady state problem with the boundary condition NJ / &J = 0. 

Assume that the geometric acoustical expansion of the incident wave has the form 
t( = _4 t5, @) c-W-P(~.?Of+ ... , i, e. that it can be obtained from (1.3) by replacing 

fo (7) by e GW Performing the corresponding formal substitution in (4.4), we obtain . 

wo (T,X, Y) =eeioT 

Jf2 ,/lo,++nX;~-=‘4)(1 + cos p cos (p) 
l/nr (un_,iz 

(- cos p - co5 cpp+1 
+ 0 (w-n-“q (6.2) 

In the case when x < 0, the boundary is a straight line, becoming a curve when 

x > 0 and p = 3t ; this problem has been solved using approximate methods in [3, 41 
It is also noteworthy that the known Kirchhoff method yields an expression for LUP , 

which .agrees with (6.2) with the accuracy of up to 0 (o -“-‘$. 

7, A rigorous estimate of the change in the value of the integral (1.5) caused by 
neglecting Gz may now he obtained for the case when m > 6 in (2.1). Integrating 
(1.5) by parts four times we obtain 
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I/’ (‘I’, x, Y) = ss @v(W 
T H (T - t, X, Y; x, y) d! ds (7.1) 

By (3. I). H = Ho 4- HI; functions H and Hi are obtained from G and G, by fourfold 
integration with respect to T. Since the Green’s function G satisfies the boundary con- 

dition @G I c%z = 0, it follows that H also obeys this condition. Consequently on I’ we 
have l3H, / an IL-l -q+ (t, I) (q* E aH,, ! an ir) (7.2) 

Now replacing T - t by t and considering H, (t, X, Y; I, y) as a function of t, z, y 

we find that, as in Sect. 3, Ho = H, -t_ HI, where 

H2 = (2np)+ (t - p)“’ / r (nl + 1) + 0 ((t - p)“.+‘), m, s ‘f2 (7.3) 

and HJis the wave formed on reflection of H,from I’,,. Formula (2.6) can therefore be 
used with 

m = i(,. A,, ._- (2%~) -‘;z, 3 = 9, r = (‘X2 f YZ)“l 

to estimate the function q*. 

If the function 4% and its first derivatives are now inspected in the region 1 t - r 1 + 
-f- I z ]< Ch where h are smail, we fiid that since by (2.9) $’ = 0 (An-l), ‘t = 0 (h), 

T - TO =L- 0 (h”) in this region, Eq. (‘2.6) yields q* = 0 (hn@/*). The derivatives 

qr* _ 0 (“““&), qs* = 0 (~W’h) (7.4) 
are estimated in a similar fashion. 

Let us now consider the function HI. This function satisfies the wave equation, the 

boundary condition (7.2) and vanishes when H = Ho, i.e. in the regions not yet reached 

by the waves formed on reflection of (7.3) from the segments of the boundaries I’ and 
I”@ on which z > 0 . If HI is written in the form HI = V + W, where V is a function 

constructed below satisfying the boundary condition (7.2) and W satisfies the homogene- 

ous boundary condition as well as the following nonhomogeneous equation 

w,, - AW = f (f SE AI’ - V,,), aW/h=O on I (7.5) 

Let (i) (t, E) denote any function of class C2 positive in the region Q (1 < 7 < 2. 

0 < E < I). vanishingoutside Q and such that its integral over Q is equal to unity. In 
addition, let n denote a normal to I’, 

It is now possible to estimate the derivatives of B 

V, _mz Vn -= - jj (~~0 - rlrc~~” - n&“) otltd% 

On r, i.e. when 9 = 0, we have V = 0, V,, = - qO, therefore 8V / an. L= - q* on 

I?. Furthermore qTO = --rl(/,‘, qiO = -qq,‘, therefore on integrating by parts we obtain 

Y?, .- jj $ (0 + ro, + 4~) dtdc ; 
V, and V, can be similarly expressed in terms of 9” and the second derivatives of Y 

in terms of the first derivatives of fi’. It follows therefore from (7.4) and (7. S) that 
f :_zz G (/&n+‘:*). 

To estimate the energy of the wave W we denote by K the part of the cone 
-- 

Ko(--C,h< t - r< C,h -ysz+ y”) 

in which Y > g (LX); by K (1) its intersection with the plane t =z cmst and assume that 
r and cp are as in (3.4). The number C, is chosen so that H, =-: V = 0 on the cone base, 
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i.e. on K (to) where to = F - C,h. 

Such a choice is feasible when 0 < h < h,, since Hi = H - H, = 0 outside the 

region of infIuence of those segments of I’ and I,, where 5 > 0. On the segments them- 

selves we have that H = N, = 0 in the parts not yet reached by the wave (7.3). i.e. 
where t - r < - r cos cp + 0 (2). The number Cz can be taken as independent of cp 
and h for any fixed 6 > 0 when 6 < cp < TI . 

Let E (2) denote the energy of the wave w in the region K (t), i.e. 

(7.6) 

Since W = W, = 0 in K (to) we have, as in [S]. 

Since t--t, < c,h + c&, f = G (P’/s), then E (t) = 0 (h2n*5). 
Let us estimate the function W on Ih, the part of E contained inside the prism 

I t - r I + I z I < C,h. For a sufficiently large ratio C, : C,, , W = 0 on the part S, of 
the side surface of the cone K, lying inside the prism. Therefore on rh 

ff? = W= = ( j W,dy)% < (Cl + C,) h { Wu2dy 

Here the integration is performed over the segment connecting I’,and Sk. Integrating 
both sides of the inequality with respect to t and z over the region Ih and noting that 

by virtue of (7.6) the triple integral of WV” is not larger than the integral of 2E’ (t), we 

obtain 
f C 
% 

HPdt dx = 0 (h2”+‘) (7.7) 

Now estimate the part Jo of the integral (7. l), obtained by replacing Ii by Hs, which 

was neglected in the derivation of (4.4); Since Q = a(~ + V) / ~?r&, it follows from 

(2.1) and (2.6) that a4q/lat4 = 0 (hnsmm6 ). According to formulas (3.6)-(3.Q when 

cp>n-- B + 6 the integration in (7.1) is performed over the region with radius of 

the order of 0 (h) surrounding the coordinate origin. Using the Buniakowski inequality 
and the estimates obtained, we find that J1 =- 0 (h2nim-*~a). Since 12 > 2, J, can be 

included in the remainder of formula (4.4). 
From the estimate obtained it also follows that when n > 2, we can find another 

n - 2 terms of the geometric acoustical expansion for the wave (4.4) by replacing\G 

in (1.5) by the known function G,. 

8, For the boundary condition U = 0 a rigorous estimate of the influence of the 
neglected terms is obtained in basically the same manner. Let m > 4 in (2.1). Double 

integration by para of (5.1) yields 

t, X, Y; x, y) dt ds 

As in (3.1) we find that H = H,, + HI; the functions Ii and Hi are obtained from G 
and C;i by integrating three times with respect to T. Relation (7.2) on I now becomes 
H1 = --_(I* (t, 21, q* = H,, and ml = 6/, in (‘7.3). Estimates (7.4) remain as before but 
the estimate for H, changes. 

Lemma. Let K denote the part of the cone t, < t < t1 - vz’ + ya in which 
v > g (z) and ]g’ (z) I\< const and B is the part of the surface y = g (3) situated inside 
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the cone. Also let in be the solution of utf = uXz + uyy in K satisfying the conditions 
u=u~=Owhent==t,andn==cponB. Then 

(8.2) 

a = cos (n, y) = (1 + p)-‘i*, f3 = cos (n, 2) = - ag’ 

where s is the arc length of the curve y = g (5). 

The lemma is proved by integrating the identity 2 (ut + uv) (utl - uxX - nyy)z 0 
over K and transforming the resulting volume integrals into surface integrals. 

Note. Using the inequality (8.2) we can easily estimate the energy E (t) of the 

wave II at any cross section t = tz of K 

The estimate for the right-hand side is obtained using (8.2) and the Buniakowski 
inequality. 

Applying the lemma to the case when u = HI, ‘p = q* and K is the same as in Sect. 

Taking into account the fact that in (2.1) m >, 4, we obtain @q/ ata = 0 (hn+m-4f on 
p,,. Consequently the integral of 83q / &VW, / an over I’?‘ is equal to 0 (hZn+m-J~z) and 

can be included in the remainder of (5.2) when II > 2 . 

9, The method given above can also be used when the boundary I’ consists of two 
smooth arcs meeting at an angle at the point 0, i.e. the method is also applicable to 
the problem of the diffraction of a wave in an angular region with curved sides. In this 

case, the angle formed by two tangents to the curves at 0 is taken as I’, , and the first 

term of the geometric acoustical expansion of the diffracted wave is identical with that 

obtained in the problem of diffraction on IO. The proposed method makes it fissible 

to obtain the second term and a rigorous estimate of the remainder(at that portion of the 
diffracted wavefront at which the reflected wave is absent). 

Suppose that two terms of the geometric acoustical expansion of the incident wave 

(1.3) are known. The solution of the problem of diffraction of this wave on I’ is the 
sum of the known solution (see 153 Sect. 4) of the diffraction problem of this wave on 
I?0 and the correction ur defined by (1.5) or (5.1). As before we have that G = G, + G, 

where GO is a known [SJ Green’s function for the region bounded by l’, and G, is the 
remainder. As in Sects.4 and 5 we have w = 0 (hn+m-‘!z), and neglecting Gr causes an 
error in u of the order of 0 (/~2n+m-sr~ ) (the proof is identical to that of Sects. 7 and 8), 
and does not affect the second term of the geometric acoustical expansion of the dif- 
fracted wave, this term being of the order of 0 (hm+“/2). 
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ON A FORM OF STEADY CAPILL~Y-~~~TATIONAL 

BANS OF FINS~ ~PLITU~ 

PMM Vol. 34, Np6, 1970. pp. 1085-1096 

Ia. I. SEKERZH-ZEN’KOVICH 

(Receiv%ygw 1970) 4, 

A problem concerning steady, capillary-gravitational waves of finite amplitude generated 
by pressure periodically distributed over the surface of an infinitely deep stream is con- 

sidered. A rigorous solution of this problem is presented,with the surface pressure given, 

in the form of an infinite trigonometric series. In addition a particular case is investi- 
gated when the wavelength of the given pressure coincides with the length of the steady 

free wave corresponding to the specified flow velocity and constant pressure at the sur- 

face. The waves investigated here cease to exist when the periodic part of the pressure 
distributed over the surface vanishes identically and the flow becomes uniform. Such 

waves have been called induced [I]. An analogous problem for gravitational waves was 
investigated earlier @] by the suthor. In addition, the author used the Levi-Civita method 
[3, 41 to reduce a similar problem for free capillary- gravitational waves, to a nonlinear 

differential equation. 

In the present paper the problem is reduced to solving a certain nonlinear integral 

equation. The latter is discussed and its solution is constructed for any degree of appro- 

ximation. The first three approximations are derived completely and an approximate 
equation describing the wave profile is given. 

1, Statement of the problem rnd derivation of ths b&tic fnte- 
grrl bqubtlon, Consider a plane parallel steady motion of a perfect incompre~ible 
heavy fluid bounded only from above by a free surface at which the pressure is given by 

PO = PO’ + PO tx). Here po’ = coust and p,, (z) is a given periodic function of the 
horizontal coordinate 2. The flow is assumed to move from left to right with constant 

velocity c, at an infinite depth, Since the pressure at the surface is a periodic function 

of 3, the surface assumes the form of a periodic wave, stationary with respect to coor- 
dinates attached to a progressive wave moving with velocity c. The present paper shows 

that induced waves exist for any finite values of c. 

Let the required wave and the pressure p. (cc) both possess the same symmetry with 
respect to the vertical through the wave crest. The y-axis is chosen so as to coincide 
with the axis of symme~, and is directed vertically upwards. The coordinate origin 0 
is placed at the point of intersection of y-axis with the free surface and the z-axis is 
directed to the right. 


